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Microbial natural products are an evolved resource of bioactive
small molecules, which form the foundation of many modern
therapeutic regimes. Ribosomally synthesized and posttranslation-
ally modified peptides (RiPPs) represent a class of natural products
which have attracted extensive interest for their diverse chemical
structures and potent biological activities. Genome sequencing has
revealed that the vast majority of genetically encoded natural
products remain unknown. Many bioinformatic resources have
therefore been developed to predict the chemical structures of
natural products, particularly nonribosomal peptides and polyketides,
from sequence data. However, the diversity and complexity of RiPPs
have challenged systematic investigation of RiPP diversity, and
consequently the vast majority of genetically encoded RiPPs remain
chemical “dark matter.” Here, we introduce an algorithm to catalog
RiPP biosynthetic gene clusters and chart genetically encoded RiPP
chemical space. A global analysis of 65,421 prokaryotic genomes
revealed 30,261 RiPP clusters, encoding 2,231 unique products. We
further leverage the structure predictions generated by our algorithm
to facilitate the genome-guided discovery of a molecule from a rare
family of RiPPs. Our results provide the systematic investigation of
RiPP genetic and chemical space, revealing the widespread distribu-
tion of RiPP biosynthesis throughout the prokaryotic tree of life, and
provide a platform for the targeted discovery of RiPPs based on ge-
nome sequencing.
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Natural products represent an important source of evolved
bioactive small molecules, which form the basis for the

majority of the small molecule drugs currently used in clinical
practice (1). Despite declining discovery rates, genomic data now
indicate the vast majority of natural products remain undiscovered
(2). This observation has spurred interest in leveraging bacterial
genome sequence data for natural product discovery (3–9). Sev-
eral tools have been developed to integrate genomic data toward
the genome-guided discovery of modular, assembly line-derived
natural products, including polyketides and nonribosomal pep-
tides, by applying the biosynthetic logic elucidated from the study
of model pathways (8–19). However, few systematic strategies
target other important classes of natural products, including
ribosomally synthesized natural products.
Ribosomally synthesized and posttranslationally modified

natural products (RiPPs) are a diverse class of natural products
whose biosynthesis proceeds via a ribosomal pathway, followed
by extensive posttranslational modification, rather than via mod-
ular enzymatic assembly lines. RiPPs are grouped into a number
of distinct families based on shared biosynthetic or structural
paradigms (20). In prokaryotes, the biosynthetic genes for RiPPs
are typically clustered together at a single genetic locus, as with
modular natural products. These biosynthetic gene clusters in-
clude genes coding for the precursor peptide and a set of bio-
synthetic enzymes responsible for the serial posttranslational
modification of the precursor. The precursor peptide is composed

of a core peptide, which is modified to form the final natural
product, as well as sequences that flank the core peptide at either
the N terminus (leader peptide), C terminus (follower peptide), or
both. Leader and follower peptides are removed from the mature
natural product by associated proteases. Posttranslational modi-
fications that tailor the core peptide range in complexity from
simple head-to-tail macrocyclization, as observed in cyclic bacte-
riocins, to intricate enzymatic cascades, such as those responsible
for thiopeptide biosynthesis (21).
The genetic encoding of RiPPs within small precursor peptides

has the potential to facilitate extremely accurate structure pre-
dictions, which could be used to guide natural product iden-
tification. However, the diversity of RiPPs has challenged the
development of tools to predict and identify the numerous
families of RiPPs directly from genetic information. To date, no
computational framework exists to systematically investigate
RiPPs within genetic information and drive the genome-guided
discovery of new RiPPs. As a result, the chemical space repre-
sented by genetically encoded RiPPs has largely remained dark.
Previously, we developed prediction informatics for secondary

metabolomes (PRISM), a software platform to identify NRPS
and PKS gene clusters and predict the chemical structures of
their associated products (18), and genomes to natural products
(GNP), a platform for automated identification of genetically
predicted modular natural products in liquid chromatography-
tandem MS (LC-MS/MS) data (8). In this work, we provide a
structure prediction algorithm that identifies biosynthetic gene
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clusters and generates libraries of hypothetical structures for
21 families of RiPPs (Fig. 1). Libraries of 154 hidden Markov
models and 58 motifs are leveraged to identify RiPP biosynthetic
gene clusters, predict precursor peptide cleavage, and execute vir-
tual tailoring reactions, resulting in accurate combinatorial struc-
ture prediction across a broad range of RiPP families. We validate
leader peptide cleavage and chemical structure predictions, and we
mine over 65,000 prokaryotic genomes to characterize the bio-
synthetic and structural landscape of RiPPs. We assemble known
RiPPs to describe their chemical space and compare it to the
chemical space occupied by genetically encoded RiPPs. Finally, we
combine databases of predicted structures generated by PRISM
with LC-MS/MS analysis to reveal a member of a rare RiPP family.

Results
Validating RiPP-PRISM Structure Prediction Accuracy. Having de-
veloped an algorithm for RiPP structure prediction from genome
sequence data (Materials and Methods), we sought to validate its
performance on known RiPPs. We first investigated the accuracy
of precursor peptide identification and cleavage. A reference
dataset of 161 RiPPs with both known biosynthetic gene clusters
and experimentally elucidated structures was assembled from the
minimum information about a biosynthetic gene cluster (MIBiG)
repository (22) (Dataset S1). RiPP-PRISM predicted cleavage
sites for 157 of 161 RiPPs (97.5%). Among the four RiPPs without
predicted cleavage sites, three were lasso peptides from clusters
with multiple precursors. The xanthomonin A2 precursor was
identified, but precursor cleavage was not predicted, whereas the
caulosegnin III and sphingonodin I precursors were not identified.
In all three clusters, at least one other precursor peptide was
identified and correctly cleaved. The final RiPP without a pre-
dicted cleavage site was the class II lantipeptide lactocin S, whose
unique precursor peptide was identified but not cleaved. RiPP-
PRISM therefore generated predicted structures for 136 of 137
RiPP clusters (99.3%).
Among precursor peptides with predicted N-terminal leader

peptide cleavage, 124 of 157 (79.0%) were correctly predicted. A
further 18, or 142 of 157 (90.4%), had predicted leader peptide
cleavage sites within a single amino acid of the true cleavage site.

Only 7 of 157 precursor peptides (4.5%) had predicted N-terminal
leader peptide cleavage that differed by five or more amino acids
from the true site. Among precursor peptides with C-terminal fol-
lower peptide cleavage, 22 of 24 were predicted correctly (91.7%),
whereas predicted sites for the remaining two precursor peptides
were within a single amino acid of the true site. The distributions of
the differences between true and predicted N- and C-terminal
precursor peptide cleavage are plotted in Fig. 2A, whereas the
dataset of all predicted cleavage sites is included in Dataset S1.
We next validated the accuracy of RiPP-PRISM structure pre-

dictions, which leverage combinatorial library generation to elab-
orate posttranslational modifications to the cleaved precursor
peptide. We generated libraries of hypothetical structures for all
136 RiPP clusters and compared true and predicted structures with
the Tanimoto coefficient. The median Tanimoto coefficient be-
tween each hypothetical structure library and the corresponding
true RiPP structure was used as a measure of predictive accuracy
(Fig. 2B). We observed an average median Tanimoto coefficient of
0.69 ± 0.21, with a range of 0.43–1.0 for each RiPP family. Thio-
peptides were the RiPP family with the lowest median Tanimoto
coefficient, likely because of the extremely large combinatorial
search space, as thiopeptide biosynthesis includes dehydration,
heterocyclization, and heterocycle oxidation, and pyridine for-
mation at a minimum, and may additionally include heterocycle
methylation, pyridine hydroxylation, esterification, and glycosyla-
tion, among other posttranslational modifications. In fact, pre-
dicting thiopeptide structures within a reasonable computational
time required extensive optimization of RiPP-PRISM to permit
random sampling from a biosynthetically plausible combinato-
rial search space. However, it is notable that the sparse ECFP6
chemical fingerprint, which was chosen on the basis of its excellent
performance in virtual screening benchmarks (23), generally pro-
duces low scores for any comparison of two structures that are not
perfectly identical (24). Comparing the median Tanimoto coeffi-
cients for RiPP structure predictions to the median Tanimoto co-
efficients generated by RiPP-PRISM for thiotemplated structures,
which at ∼0.25 currently represent the most accurate genomic
structure predictions of NRPS and PKS products (18), provides a
more subjective confirmation of the predictive accuracy of RiPP-
PRISM for genetically encoded RiPPs.
We also determined the single best Tanimoto coefficient from

each hypothetical structure library–true RiPP comparison and ob-
served a significant increase in the average Tanimoto coefficient for
each class (P< 0.02, Kolmogorov–Smirnov test; SI Appendix, Fig. S1).
The average best Tanimoto coefficient was 0.84 ± 0.16 and ranged
according to the RiPP family from 0.58 to 1.0. These data suggest
that, even in clusters where structure prediction based on the iden-
tified biosynthetic information involves a large combinatorial search
space, RiPP-PRISM is typically able to predict at least one structure
with a high degree of chemical similarity to the true structure. The
predicted structures with the median and top Tanimoto coefficient
for each of the 136 clusters are presented in Dataset S1.
Finally, we tested against overfitting by systematically excluding

all sequences from each cluster from the library of sequences
within PRISM, then regenerating chemical structure predictions
for that cluster (Dataset S1). Only a small decrease was observed in
the overall accuracy of chemical structure prediction, with the av-
erage median Tanimoto coefficient decreasing from 0.70 to 0.60,
and the average maximum Tanimoto coefficient decreasing from
0.84 to 0.73 (SI Appendix, Fig. S2 A and C). These results indicate
that the utility of RiPP-PRISM for chemical structure prediction is
generalizable beyond the data used to train the algorithm. How-
ever, larger decreases in predictive accuracy were observed for the
smallest families of RiPPs: glycocins, proteusins, and YM-216931
were no longer predicted at all, and the median Tanimoto co-
efficient decreased by 25% or more for the linear azole-containing
peptides, sactipeptides, and thioviridamide (SI Appendix, Fig. S2 B
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Fig. 1. Schematic overview of a genomic structure prediction algorithm for
ribosomally synthesized and posttranslationally modified natural products.
A library of 154 hidden Markov models and a set of heuristics for precursor
peptides enable the identification and clustering of biosynthetic genes. A
library of 53 motifs is used to predict precursor peptide N- and/or C-terminal
cleavage. Finally, a set of 94 virtual tailoring reactions are executed based on
identified biosynthetic information to generate a combinatorial library of
predicted structures. The exact masses of predicted structures can sub-
sequently be searched within a high-resolution LC/MS chromatogram.
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and D), suggesting that RiPP-PRISM performance may be poorer
for divergent new members of these small RiPP families.

Global Analysis of Genetically Encoded RiPP Chemical Space. We used
RiPP-PRISM to chart the chemical space of genetically encoded
RiPPs by analyzing the 65,421 prokaryotic genomes listed in the
National Center for Biotechnology Information (NCBI). RiPP-
PRISM identified 30,261 biosynthetic gene clusters encoding RiPPs
(Fig. 3A). Among all prokaryotic genomes, 19,113 (20.0%) contained
at least one cluster, corresponding to 2,118 of 12,439 unique species.
The genome of the average RiPP-producing organism contained
1.58 ± 0.92 RiPP clusters, but significant variability was observed in
biosynthetic potential. A small number of organisms were highly
prolific, with 312 microbes (1.6%) producing five or more RiPPs.
Three actinomycetes (Streptomyces mobaraensis, Nonomuraea can-
dida, and Streptacidiphilus albus) produced 11 RiPPs, the maximum
number of RiPP clusters observed in any single genome.
Although the greatest number of RiPP biosynthetic gene

clusters were observed in Firmicutes and Actinobacteria (24,319
and 3,933 clusters, respectively), our results demonstrated that
RiPPs are likely produced by nearly all bacterial phyla, including
many that have never been known to produce natural products.
Among bacterial phyla with at least one cultured representative
(noncandidate phyla), we identified RiPP clusters in 17 of 33
phyla with sequenced genomes and failed to identify clusters only
in sparsely sequenced phyla (i.e., with fewer than 50 genomes)
and in the Tenericutes. Lantipeptides were the most widely
distributed RiPPs, with clusters observed in 16 bacterial phyla
and in Archaea. Moreover, whereas there exists to date only one
example of a lantipeptide from a noncyanobacterial Gram-neg-
ative organism (pinensin) (25), we identified class I, II, and
III/IV lantipeptide clusters throughout Gram-negative phyla, in-
cluding Proteobacteria, Acidobacteria, and Gemmatimonadetes.
We also identified lantipeptide clusters in unusual producers,
such as the obligate intracellular pathogen Coxiella burnetti.
Proteusins were previously known to be produced only by Cya-
nobacteria and species of the proposed Tectomicrobia phylum
(26), but clusters were observed in Proteobacteria and in two
sequenced isolates from the poorly described Verrucomicrobia
phylum. Prochlorosins were surprisingly observed in a number of
noncyanobacterial families, including α- and δ-proteobacteria, as
well as in Verrucomicrobia. Microviridins, another cyanobacte-
rial family of RiPPs, were also found to be more widely distrib-
uted than previously appreciated, with clusters in a number of

Proteobacteria and Bacteroidetes families. Sactipeptides, which
were known to be produced only by Firmicutes, were distributed
across Archaea and Bacteria, appearing in six phyla, including
several not previously associated with natural product biosynthesis,
such as Thermotogae, Fusobacteria, and Dictyoglomi. Chlamydiae
had likewise never been appreciated as natural product producers,
but several species were observed to possess clusters for class I and
II lantipeptides. Trifolitoxin, a narrow spectrum antibacterial agent
with activity against Rhizobium spp. (27), was detected in multiple
Acinetobacter isolates, indicating a potential ecological role for this
family of RiPPs within a number of human pathogens. Thiopep-
tides are promising antibacterial drug candidates, which were
previously only associated with Firmicutes and Actinobacteria.
However, we observed thiopeptide clusters in a number of species
from Proteobacteria, Chloroflexi, Bacteroidetes, and even Dein-
ococcus-Thermus, a phylum previously considered devoid of nat-
ural product biosynthetic gene clusters. These results cumulatively
demonstrate the surprisingly universal distribution of RiPP bio-
synthesis throughout the prokaryotic tree of life. We provide all
detected RiPP clusters and the taxonomy of their producing or-
ganism in Dataset S2, as well as graphical representations of the
clusters discussed in this section in SI Appendix, Fig. S3.
Analysis of RiPP clusters revealed that the rarest families were

YM-216391 family peptides (n = 2), thioviridamide family RiPPs
(n = 9), proteusins (n = 9), and bottromycins (n = 9) (Fig. 3A).
Meanwhile, the most widespread families of RiPPs were auto-
inducing peptides (n = 8,741), lantipeptides (n = 4,420, 4,373, and
6,074 for classes I, II, and III/IV, respectively), bacterial head-to-
tail cyclized peptides (n = 2,927), and lasso peptides (n = 1,466)
(Fig. 3A). However, many RiPPs are ubiquitous signaling mole-
cules, such as the autoinducing peptides, and consequently it is
likely that many of the identified clusters produce identical prod-
ucts. We therefore used structure predictions to identify clusters
that produced unique RiPPs. Each of the 24,756 clusters for which
RiPP-PRISM predicted at least one structure were compared with
one another to generate over 612 million Tanimoto coefficient
matrices. A master similarity matrix was constructed by assigning
the value of the median Tanimoto coefficient between two libraries
of predicted structures to each cluster–cluster comparison, except
when the clusters contained at least one identical predicted struc-
ture, in which case a value of 1.0 was assigned to the comparison.
In this method, highly similar RiPPs, such as the structural isomers
epidermin and gallidermin, would be considered distinct products,
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whereas two clusters that encode the same RiPP with low sequence
homology or a different enzyme order would not.
Tanimoto coefficient analysis of predicted structure librar-

ies revealed 2,231 clusters producing unique RiPPs among the
24,756 clusters with at least one predicted structure (Fig. 3B and
Dataset S4). Strikingly, comparing the most abundant unique
cluster products to the most abundant clusters revealed a signifi-
cant reordering of RiPP families: lasso peptides, not autoinducing
peptides, are the most abundant when clusters producing the same
product are dereplicated. Unique thiopeptides, microviridins,
prochlorosins, and cyanobactins are considerably more abundant

than the distribution of their clusters had suggested. In contrast,
autoinducing peptides, bacterial head-to-tail cyclized peptides,
ComX, and streptides are more homogeneous than the distribu-
tion of their clusters would suggest. One likely explanation for this
discrepancy is the frequent and repetitive sequencing of the pro-
ducers of these molecules, which are often pathogenic or otherwise
human-associated Firmicutes, including Bacillus, Clostridium,
Staphylococcus, Streptococcus, and Enterococcus. Indeed, RiPPs of
these families are rarely, if ever, observed outside of the Firmicutes,
with our analysis identifying only 25 cyclized bacteriocins and
one ComX molecule in non-Firmicutes producers; streptides and
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Fig. 3. Genome mining for RiPP biosynthetic gene clusters and their unique products. (A) Biosynthetic gene clusters identified in a sample of 65,421 pro-
karyotic genomes, organized by RiPP family (most abundant first) and taxonomic class of producer organism. “Other” includes all classes with fewer than 100
RiPP clusters. (B) Unique products identified by Tanimoto coefficient matrix analysis, organized by RiPP family (most abundant first).
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autoinducing peptides do not appear outside of this phylum. Of the
30 most common clusters producing the same product, observed
between 110 and 3,697 times, all were from commonly sequenced
human pathogens or laboratory strains, with 28 of 30 produced by
Firmicutes.
We leveraged RiPP-PRISM structure predictions to chart the

chemical space of genetically encoded RiPPs and compared it to
the chemical space occupied by known RiPPs. A thorough review
of the literature and both public and in-house databases revealed
a set of 509 known RiPPs (Dataset S3), which was used to gen-
erate a Tanimoto coefficient similarity matrix for known RiPPs.
We then used principal component analysis to plot the chemical
space of known RiPPs (Materials and Methods) with the size of
each node corresponding to the number of known RiPPs of each
family, and its color corresponding to the within-family chemical
diversity as measured by the average median Tanimoto coefficient
(Fig. 4A). We subsequently used the Tanimoto coefficient matrix
of structure predictions for 24,756 clusters to plot the chemical
space of genetically encoded RiPPs (Fig. 4B).
Comparing the two reveals disparities between the number of

known and genetically encoded natural products for many classes:
in particular, the genetically encoded lantipeptides and lasso pep-
tides vastly outnumber known products from these families. This
analysis also highlights genetically encoded RiPP families with a
low level of chemical diversity, such as bacterial head-to-tail cyclized
peptides, trifolitoxins, thioviridamides, and streptides: these families
of genetically encoded natural products are less likely to represent
attractive pharmaceutical or industrial targets. Conversely, cyanobactins
and thiopeptides demonstrated the highest within-family chemical
diversity. This observation, combined with their broad distribution
in organisms not previously known to produce these RiPPs, suggest
these families are viable targets for discovery efforts.
These results also provide some insight into the number of

RiPPs that remain undiscovered. Thorough investigation of the
literature and both public and in-house databases revealed a set

of 510 known RiPPs, but Tanimoto coefficient analysis revealed
2,231 unique cluster products. Removing congeners produced by
the same cluster reduced the size of the set of known RiPPs to
398. Our analysis therefore suggests that at least 1,833 of 2,231,
or 82% of genetically encoded RiPPs remain unknown if all
known molecules are currently present in sequenced genomes.
However, many known RiPPs were obtained from environmental
isolates and other organisms without sequenced genomes, and
therefore would not have been detected in this analysis. Thus,
82% is more likely to represent a conservative lower bounds for
the percentage of undiscovered RiPPs than a truly accurate es-
timate, emphasizing our finding that the vast majority of genet-
ically encoded RiPPs remain unknown.

Leveraging Accurate Structure Prediction for Genome-Guided RiPP
Discovery. We finally sought to demonstrate the potential of the
highly accurate structure predictions generated by RiPP-PRISM
to facilitate the targeted, genome-guided discovery of novel RiPPs.
Bioinformatic analysis revealed that natural products of the YM-
216391 family were among the rarest RiPPs, with only two bio-
synthetic gene clusters identified in a sample of 65,421 genomes.
Tanimoto coefficient matrix analysis suggested that neither cluster
product was identical to any of the three known members of this
family, which include urukthapelstatin and mechercharstatin in
addition to YM-216391, the sole representative with a sequenced
cluster. All three products are characterized by nanomolar cyto-
toxicity and a conserved, azole-rich macrocyclic structure. Putative
YM-216931 family clusters were identified in the genomes of
Streptomyces aurantiacus JA 4570 and Streptomyces curacoi DSM
40107. Because S. aurantiacus JA 4570 has been the subject of
intense investigation over the past two decades, and is known to
produce at least three distinct classes of natural products with
diverse activities, we reasoned that it would be a useful target to
demonstrate the utility of our approach.
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Fig. 4. Charting the chemical space of known and genetically encoded RiPPs. (A) Principal component analysis plot of 509 known ribosomal products, or-
ganized into 18 families, with node size corresponding to number of known RiPPs and node color corresponding to within-family chemical diversity (average
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We leveraged RiPP-PRISM structure predictions to facilitate
targeted identification of natural products in LC-MS/MS data
from bacterial extracts. Given a library of structures in SMILES
format predicted by RiPP-PRISM, LC-MS/MS searches can be
readily automated (8) for parent and daughter ion mass pre-
dictions. S. aurantiacus was cultured in a panel of 20 media for 3 d
before cell pellets were collected and extracted with organic sol-
vent, which was then processed using high-resolution LC-coupled
MS (HR-LC/MS). Chromatograms from each of the media con-
ditions were analyzed by searching for the library of 15 predicted
structures (SI Appendix, Fig. S4) from the putative S. aurantiacus
YM-216391 family cluster. A predicted structure was only iden-
tified in one media condition and at an extremely low concen-
tration, with a mass consistent with the fully oxidized azole ring
system of predicted scaffold 10, which was named aurantizolicin
(Fig. 5). MS/MS fragmentation displayed the predicted tandem
isoleucines, and incorporation of deuterium-labeled phenylalanine
(d8-Phe) demonstrated incorporation of five deuterium atoms
(with the other three being lost during hydroxylation, hetero-
cyclization, and aromatization; SI Appendix, Fig. S5). Culture
conditions were serially optimized for production, culminating in a
large culture effort to isolate sufficient quantities of aurantizolicin
to confirm the predicted structure with NMR spectroscopy. As
expected, aurantizolicin possesses a number of conserved and
highly predictable features unique to this small class of RiPPs,
and is closely related to YM-216391, with nearly identical NMR
chemical shifts (SI Appendix, SI Text). Like other RiPPs of this
family, aurantizolicin is produced in extremely small quantities
and consequently was not discovered despite previous bioactivity-
guided studies. However, its identification by RiPP-PRISM indi-
cates our platform can be leveraged toward the targeted discovery
of novel, genetically encoded RiPPs.

Discussion
Microbial natural products and their derivatives are essential to
the treatment of many diseases, and RiPPs are a class noted
for their biological activities. However, the structural and
biosynthetic diversity of RiPPs has to date challenged the de-
velopment of a comprehensive platform for the analysis of ge-
netically encoded RiPPs. The scope of current models of RiPP
biosynthesis imposes inherent limits on the predictive accuracy

of any platform designed for the systematic analysis of geneti-
cally encoded RiPPs, and necessarily precludes the develop-
ment of software capable of perfectly classifying and predicting
chemical structures for every RiPP cluster. However, the devel-
opment of RiPP-PRISM has here enabled a systematic in-
vestigation of RiPP biosynthesis in over 60,000 prokaryotic
genomes. Our analysis demonstrates the nearly universal distri-
bution of RiPPs throughout the prokaryotic tree of life, with
RiPP clusters absent from only noncandidate bacterial phyla with
fewer than 50 sequenced genomes and the Tenericutes. We also
observed the surprisingly widespread taxonomic distribution of
many RiPP families thought to be produced by only one or two
phyla, including prochlorosins, microviridins, and cyanobactins,
and identified RiPP clusters in several phyla that had not pre-
viously been known to produce natural products. We leveraged
accurate structure predictions to chart the chemical space of
genetically encoded RiPPs, dereplicating clusters that produce
the same products and ranking RiPP families according to their
chemical diversity. Our analysis indicates that the vast majority
of RiPPs remain undiscovered and provides a lower bounds for
an estimate of the number of unknown RiPPs. Finally, we use the
structure predictions of our bio- and cheminformatic platform to
identify and isolate a member of the smallest family of RiPPs,
those related to the cytotoxic peptide YM-216391.
This work expands significantly on previous approaches de-

veloped to facilitate genome-guided RiPP analysis or discovery.
Three general properties distinguish RiPP-PRISM from previous
efforts. Its ability to handle 21 families of RiPPs makes it a
uniquely extensive platform. Moreover, its ability to generate
predicted structures separates it from any existing tool. Finally,
its application to global genomic analysis requires no manual
annotation. Previously, Maksimov et al. (28) used a combination
of heuristic precursor identification and motif-guided identifi-
cation of biosynthetic enzymes to mine 3,000 genomes for lasso
peptides and identify a novel lasso peptide, but their approach
was limited to this family of RiPPs. Efforts capable of genome
mining for RiPPs of multiple classes have often been limited by
the amount of manual annotation required to identify clusters. For
instance, Letzel et al. (29) used a set of three bioinformatics tools
and BLAST searches to mine the genomes of 211 anaerobic bac-
teria for six families of RiPPs, but could not generate predicted
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Fig. 5. Genome-guided isolation of a member of the rare YM-216391 family of RiPPs. Hypothetical structures for a S. aurantiacus RiPP were generated
by RiPP-PRISM and were used to search LC-MS/MS chromatograms. A single peak was identified corresponding to predicted structure no. 10 of 15, including
MS/MS data, which demonstrated that this candidate structure was the predicted molecule, aurantizolicin.
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structures or match clusters to unique products except by manual
annotation. Likewise, Cox et al. (30) used YcaO proteins to identify
thiazole/oxazole-modified macrocycles (TOMMs), a superfamily
encompassing members of linear azol(in)e-containing peptides,
cyanobactins, thiopeptides, and bottromycins, and identified nearly
1,500 clusters; however, their method required extensive manual
annotation. Whereas automated methods for RiPP genome min-
ing exist, these are often limited to a subset of RiPP families.
The widely used antiSMASH platform (19), for instance, is capable
of identifying putative lantipeptide clusters and predicting their
cleavage sites, but can neither generate predicted structures nor
identify other classes of RiPPs. Cimermancic et al. (31) developed a
machine-learning algorithm, ClusterFinder, to identify clusters of
both known and unknown classes based on Pfam domain content.
Their method identified several hundred RiPP clusters in a sample
of 1,154 genomes, but was not capable of predicting the structures
of their corresponding products. Moreover, manual annotation was
required to identify the family of RiPPs that each cluster belonged
to. BAGEL3 (32) is capable of identifying 12 families of RiPPs, but
this platform cannot predict precursor cleavage or generate pre-
dicted structures. In contrast, RiPP-PRISM uses a library of 154
hidden Markov models to identify 21 families of RiPPs, an en-
semble of hidden Markov models and heuristics to identify putative
precursors, a set of 54 motifs to predict precursor cleavage, and a
library of 94 virtual tailoring reactions to generate highly accurate
predicted structures, making it a uniquely extensive resource for
RiPP genome mining. The scale of the genome mining effort pre-
sented here, with the identification of over 30,000 clusters in over
60,000 prokaryotic genomes, as well as the ability of RiPP-PRISM
to dereplicate clusters that produce the same natural product both
attest to its advantages as a platform for RiPP discovery.
Although no existing platform is capable of predicting the

structures of genetically encoded RiPPs, some existing methods
are capable of automating, to varying degrees, the processes of
RiPP cluster identification and classification. We compared the
ability of RiPP-PRISM, antiSMASH 3.0, and ClusterFinder to
identify RiPP clusters within a set of 5,049 complete microbial
genomes from NCBI (Dataset S5 and SI Appendix, SI Text). Of
the 2,258 unique clusters identified, 912 (40.4%) were detected
by all three methods, 712 (31.5%) by two methods, and the
remaining 634 (28.1%) by only one method (SI Appendix, Fig. S6
A, D, and E). A total of 586 clusters were identified by RiPP-
PRISM only (30.0%), whereas 216 clusters were not identified by
RiPP-PRISM (9.6%). However, manual inspection of clusters
not identified by PRISM suggested a large fraction represented
false positives: for instance, isolated homologs of the ATP-grasp
enzyme RimK were identified by antiSMASH as microviridin
clusters; a large number of putative lantipeptide clusters de-
tected by antiSMASH based on a “LanC-like” hidden Markov
model did not appear to have any of the enzymatic machinery
associated with the biosynthesis of known lantipeptides; and
isolated homologs of the PoyD radical SAM epimerase were
identified by antiSMASH as proteusin clusters. Manual anno-
tation of each of the 216 clusters not detected by RiPP-PRISM
suggested that up to 87% corresponded to putative false posi-
tives. Although many such putative false positives were detected
by both antiSMASH and ClusterFinder, we note that Cluster-
Finder predicted 198,302 clusters in a sample of 5,049 genomes,
of which the vast majority are themselves likely to represent false
positives; consequently, identification by ClusterFinder does not
provide a high-confidence independent confirmation of putative
clusters identified by antiSMASH. PRISM additionally identified
at least 10% more clusters than antiSMASH and ClusterFinder
combined, for 6 of 21 RiPP families (SI Appendix, Fig. S6 F and
H), and exhibited less bias toward actinomycete clusters than
either ClusterFinder or antiSMASH (SI Appendix, Fig. S6 B, C,
G, and I). The results of a comparative analysis on a large set of
genomes suggest that, in addition to introducing unique chemical

structure prediction functionality, RiPP-PRISM expands the
scope of RiPP genome mining by revealing a greater number of
RiPP clusters, particularly for atypical producing organisms.
The approach presented here relies fundamentally on homol-

ogy to known clusters and experimentally elucidated biosynthetic
transformations to identify RiPP clusters from sequence data and
predict the structures of their products. Although this approach
enables the characterization of the biosynthetic and structural
landscape of genetically encoded RiPPs with known chemotypes, it
has at least two significant limitations with respect to RiPP dis-
covery. In particular, our approach cannot identify novel families of
RiPPs, and it cannot predict the presence or mechanisms of novel
enzymatic tailoring reactions. Therefore, it is nearly certain that this
analysis will have failed to identify RiPP clusters corresponding to
novel chemotypes, and likewise will have failed to predict the action
of enzymatic tailoring reactions with little or no homology to known
enzymes in RiPP biosynthesis. However, these failings are not
unique to the platform described here: to date, no computational
strategy is capable of predicting the action of novel tailoring en-
zymes in natural product biosynthesis except by homology to known
enzymes; and whereas some machine learning strategies are capa-
ble of identifying clusters from previously unknown families (31),
they are not capable of predicting the structures of the genetically
encoded products. Moreover, we emphasize that although our val-
idation demonstrated PRISM is capable of highly accurate structure
predictions, perfect accuracy is not necessary to dereplicate clusters
that produce the same product, because PRISM will always gen-
erate the same predicted structures from the same set of identified
biosynthetic information.
Several other limitations of PRISM should be highlighted.

Some families of RiPPs are thought to be specific to eukaryotes,
but because PRISM is designed for the analysis of prokaryotic
genomes, these RiPP families were not included in the present
analysis. Current models of RiPP biosynthesis are incomplete
and therefore limit the accuracy of cluster detection and as-
signment to known RiPP families for divergent new clusters,
particularly for families with a small number of available se-
quences. The analysis presented in SI Appendix, Fig. S2 suggests
this is particularly likely to be the case for glycocins, proteusins,
and YM-216931 family RiPPs, and that new members of these
families were most likely to have remained undetected by our
analysis. Finally, many microbial genomes exist as drafts or low-
quality assemblies, a fact that may have prevented the identifi-
cation of some fragmented clusters and furthermore has the
potential to bias cluster identification and structure prediction
for user-submitted sequences.
Although we identified 30,261 RiPP clusters in a sample of

65,421 prokaryotic genomes, PRISM generated predicted struc-
tures for only 24,756 (81.8%). This figure is considerably lower
than the fraction of clusters for which at least one predicted
structure was generated during validation on known products
(99.3%). We plotted the remaining 5,505 clusters by RiPP family
and producing organism taxonomy in SI Appendix, Fig. S7. Class I,
II, and III/IV lantipeptides cumulatively accounted for over 86%
of clusters without a structure predicted. This can likely be at-
tributed to the diversity of lantipeptide precursors, which likely
precluded precursor identification or cleavage for lantipeptides
with little homology to known precursors. The only other families
of RiPPs with more than 100 clusters without structure predictions
were bacterial head-to-tail cyclized peptides and thiopeptides; these
failures can presumably be attributed to the same factors as lanti-
peptides, as well as the absence of a heuristic for bacterial head-to-
tail cyclized peptide precursor identification. Manual inspection of
thiopeptide clusters without predicted structures revealed a large
number (>50) from the frequently sequenced genus Salinispora,
where a large transposon insertion had occurred between the pre-
cursor and biosynthetic genes, placing it outside of the cluster size
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range considered by RiPP-PRISM: it is possible that transposon
insertion produced similarly incomplete results for other clusters.
In this work, we have introduced a comprehensive platform for

identifying RiPP gene clusters from prokaryotic genomes and
predicting their chemical structures with a high degree of accuracy.
We have leveraged this platform to conduct a global analysis of
genetically encoded RiPPs, revealing these molecules are ubiqui-
tous throughout prokaryotic phyla, with a substantial majority
remaining unknown. Finally, by creating highly accurate predicted
structures, RiPP-PRISM facilitates the targeted detection of new
molecules from LC-MS/MS data based on genome sequence data,
leading in this work to the discovery of a natural product from a
rare family of RiPPs. Our results highlight the advantages of this
platform for the genome-guided discovery of novel RiPPs.

Materials and Methods
General Computational Methods. Hidden Markov models were constructed by
manual compilation of experimentally annotated sequences, which were
supplemented with homologs identified by querying the Integrated Micro-
bial Genomes database (IMG) (33) and NCBI BLAST (34) databases. Sequences
were aligned with MUSCLE (version 3.8.31) (35) and trimmed using trimAl
(version 1.2rev59) (36) to remove gaps. Hidden Markov models were com-
piled from the trimmed alignments using hmmbuild (version 3.1b1) (37) and
bitscore cutoffs were determined by manual analysis of the results of
searches of the UniProtKB and UniProt reference proteome databases (38).
Motif discovery was performed using the MEME web server (39), allowing
any number of motif occurrences with a minimummotif length of 6 aa and a
maximum length of 25 aa. The Chemistry Development Kit (version 1.5.10)
(40) implementation of the ECFP6 chemical fingerprint (41) was used to
calculate Tanimoto coefficients.

Development of an Algorithm for Genome-Guided Chemical Structure Prediction
of RiPPs.We developed an algorithm to identify biosynthetic gene clusters and
predict chemical structures for 21 families of RiPPs by extending the open-
source PRISM framework (18). PRISM is a Java 8 web application built for the
Apache Tomcat 7 web server, which implements BLAST (version 2.2.25+) (42),
HMMER (version 3.1b1) (43), BioJava (version 3.0.7) (44), BioPerl (version
1.006924) (45), RDKit (version 2014.03.1), the Chemistry Development Kit
(version 1.4.19) (40), Prodigal (version 2.6.2) (46), and FIMO (version 4.11.0)
(47). PRISM queries a user-input sequence with a library of several hundred
hiddenMarkov models and curated BLAST databases to identify nonribosomal
peptide, type I and II polyketide, deoxy sugar (8), and resistance (9) domains.
The results of this search are used to identify natural product biosynthetic
gene clusters. Linear scaffolds are generated and elaborated in a combinato-
rial manner based on predicted tailoring reactions, deoxy sugar moieties, and
cyclizations to generate a combinatorial library of predicted structures.

We extended PRISM by developing 53 motifs, 150 hidden Markov models,
and 94 virtual tailoring reactions specific to RiPP biosynthesis and developed
rules for the identification of biosynthetic gene clusters for 21 families of
RiPPs. Precursor peptides are identified with a combination of hidden Mar-
kov models and heuristic strategies and are cleaved at their N terminus and/
or C terminus based on conserved motifs. Tailoring reaction domains are
identified, and all potential reaction sites are determined. Virtual reactions
are then executed combinatorially to produce a library of hypothetical
structures corresponding to the identified biosynthetic gene cluster. A de-
tailed description of precursor peptide cleavage and tailoring reaction exe-
cution is presented in SI Appendix, SI Text. We note that although tailoring
reactions are described in the SI Appendix, SI Text according to the bio-
synthetic family, each tailoring reaction can occur within any class of RiPPs:
thus, for example, the identification of a putative domain with homology to
cyanobactin prenyltransferases within a lantipeptide cluster would result in
the generation of O- or N-prenylated hypothetical lantipeptide structures.
Furthermore, any precursor peptide associated with a cluster will result in
the generation of predicted structures, regardless of cluster family.

All hidden Markov models developed in this study are presented in Dataset
S6, table 1. All motifs developed in this study are presented in Dataset S6, table
2. All virtual tailoring reactions developed in this study are presented in Dataset
S6, table 3. All rules for RiPP cluster detection are presented in SI Appendix,
Table S1. We additionally provide graphical representations of the genes re-
quired to identify clusters of each RiPP family, and the chemical transformations
associated with each gene, in Dataset S7. RiPP-PRISM is integrated into the
publicly available PRISM web application at magarveylab.ca/prism, whereas
source code is available at github.com/magarveylab/prism-releases.

Validation of Predictive Accuracy. PRISM was run on 136 known RiPP clusters
with the following settings: tailoring, deoxy sugar, and RiPP domain HMM
searches enabled; both Prodigal and all potential coding sequences used to
identify ORFs; and cluster scaffold library limit of 100. Predicted and true
structures were compared with the Tanimoto coefficient.

Global Analysis of Genetically Encoded RiPP Chemical Space. A total of 65,426
prokaryotic genomes were retrieved from NCBI Genome in March 2016. PRISM
was run on each genome with the following settings: tailoring, deoxy sugar,
and RiPP domainHMMsearches enabled; Prodigal used to identifyORFs; cluster
window of 5,000 bp; and a cluster scaffold library limit of 100. A total of 65,421
of 65,426 genomes were successfully run through PRISM. Taxonomic in-
formation for each genome was retrieved with the ETE module in Python (48).
JSON output from PRISM was parsed to retrieve all predicted structures for
each cluster and the RiPP family or families of the cluster. All predicted
structures from each of the 24,756 clusters for which predicted structures were
generated were compared with one another to generate Tanimoto coefficient
matrices ranging in size from 1 × 1–100 × 100. The median value of all Tani-
moto coefficients within the matrix was assigned to the cluster–cluster com-
parison unless the matrix contained one or more instances of 1.0, in which case
the clusters were understood to produce the same product and a value of 1.0
was assigned to the cluster–cluster comparison.

Plotting RiPP Chemical Space. A Tanimoto coefficient similarity matrix was
generated for a comprehensive collection of 509 known ribosomal natural
products, including molecules from 18 distinct families. ECFP6 chemical fin-
gerprints were used to calculate Tanimoto coefficients. Molecules with the
highest median within-family Tanimoto coefficients were taken as repre-
sentative structures, and the resulting 18-member Tanimoto similarity matrix
was plotting with multidimensional scaling (MDS) using XLSTAT 2016. MDS
was performed with default settings, presenting final results in two di-
mensions using an absolute model, measuring correspondence between the
matrix input and final distances via Kruskal stress equation 1. Minimization
was completed after maximum convergence (0.00001) was reached. Points
for representative structures in the resulting plot were enlarged such that
their area corresponded to the number of members of their associated RiPP
class, with color corresponding to the median within-family Tanimoto co-
efficient. Lantipeptides of classes I, II, III, and IV were here classed as a single
family, as this plot includes all known compounds, including structures whose
biosynthetic origins are undetermined. To plot genetically encoded RiPP
chemical space, the number of unique products was used to determine the size
of each node, and the average median within-family Tanimoto coefficient was
used to color nodes according to within-family chemical diversity.

General Experimental Procedures.NMR spectra 1D (1H and 13C) and 2D [1H-13C
heteronuclear multiple bond correlation spectroscopy (HMBC), heteronuclear
single quantum coherence spectroscopy (HSQC), nuclear Overhauser effect
spectroscopy (NOESY), total correlation spectroscopy (TOCSY), and homonuclear
correlation spectroscopy (COSY)] for aurantizolicin was recorded on a Bruker
AVIII 700 MHz NMR spectrometer in d6-DMSO (Sigma-Aldrich). High-resolution
LC-MS/MS spectra were collected on a SciEX 5600+ TripleTOF mass spectrom-
eter (ABSciEX) with an electrospray ionization (ESI) source and using CID with
helium for fragmentation, coupled with an Agilent 1100 series HPLC system
using an Ascentis Express C8 column (150 mm × 2.1 mm, 2.7 mm; Sigma-
Aldrich) for analytical separations, running acetonitrile with 0.1% formic acid,
and double-distilled (dd)-H2O with 0.1% formic acid as the mobile phase.
Preparative HPLC was performed using a Dionex UltiMate 3000 HPLC system,
using a Luna C8 column (250 mm × 10 mm; Phenomenex), running acetonitrile
with 0.1% formic acid and ddH2O with 0.1% formic acid as the mobile phase.

Microbial Strains and Culturing. S. aurantiacus JA 4570 was obtained from the
Hans Knöll Institute (IMET 43917). It was maintained on Bennett’s agar at 28 °C.
Bennett’s agar contains 15 g/L agar, 1 g/L beef extract, 1 g/L yeast extract, 2 g/L
NZ-amine, and 10 g/L glucose, with pH adjusted to 7.3. KE media contains 1 g/L
glucose, 10 g/L potato dextrin, 5 g/L yeast extract, 5 g/L NZ-amine, 3 g/L beef
extract, 0.5 g/L calcium carbonate, and 0.05 g/L magnesium sulfate heptahy-
drate. After autoclaving, 2 mL/L sterile phosphate buffer (91 g/L potassium
phosphate monobasic and 95 g/L potassium phosphate dibasic, pH 7) was
added. Aurantizolicin was initially detected in a media containing 20 g/L sodium
chloride, 10 g/L soluble starch, 0.3 g/L casein, 2 g/L potassium nitrate, 2 g/L po-
tassium phosphate dibasic, 0.05 g/L magnesium sulfate heptahydrate, 0.02 g/L
calcium carbonate, and 0.01 g/L iron (II) sulfate heptahydrate. Aurantizolicin
production media contains 20 g/L sodium chloride, 10 g/L soluble starch, 3 g/L
casein, 2 g/L potassium nitrate, 2 g/L potassium phosphate dibasic, 0.05 g/L
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magnesium sulfate heptahydrate, 0.02 g/L calcium carbonate, 0.01 g/L iron (II)
sulfate heptahydrate, and 30 g/L washed HP-20 resin (Diaion).

Production and Isolation of Aurantizolicin. S. aurantiacus was grown on Ben-
nett’s agar for 2 wk at 28 °C. Colonies were added to 250 mL Erlenmeyer
flasks containing 50 mL of KE media and grown for 48 h at 28 °C and
225 rpm. From these, 10 mL of culture was added to a 2.8-L Fernbach flask
containing 1 L of aurantizolicin production media, which was incubated at
28 °C and shaken in a Kuhner ISF4-X shaker incubator (Basel, Switzerland)
at 225 rpm for 72 h. Mycelial mass and resins were collected via Buchner
funnel vacuum filtration using nongauze milk filters (KenAG). The resultant
cell pellet and resin cake was extracted multiple times with excess acetone that
was evaporated to dryness using a rotary evaporator. The dried extract was
resuspended and partitioned in 1:1 butanol:water, collecting the butanol phase
and evaporating it to dryness. Dried extract was resuspended in methanol and
loaded on a large open column containing LH20 resin (Sephadex) with meth-
anol as the mobile phase. Fractions containing aurantizolicin were pooled, dried
down, and resuspended in a small volume of DMSO. Aurantizolicin was purified
by semipreparative scale HPLC, using a Luna C8 column (250 × 10 mm) with
ddH2O and acetonitrile containing 0.1% formic acid as the mobile phase,
pumping at 8 mL/min. Acetonitrile was 5% for the first 3 min, ramping to 50% by
10 min, then to 80% by 23 min, then proceeding to 100% at 24 min. Aur-
antizolicin eluted at 20.2 min. A total of 60 L of optimized production culture

provided <1 mg of aurantizolicin. HPLC fractions containing aurantizolicin
were dried down and resuspended in d6-DMSO for NMR. Structure eluci-
dation of aurantizolicin, including HRMS measurement, NMR spectra,
chemical shift table, and detailed description of chemical shift correlations
are provided in SI Appendix, SI Text.

Incorporation of d8-Phenylalanine into Aurantizolicin. S. aurantiacus was grown
on Bennett’s agar for 2 wk at 28 °C. Colonies were added to 250 mL Erlenmeyer
flasks containing 50mL of KE media and grown for 48 h at 28 °C and shaken in
a Kuhner ISF4-X shaker incubator (Basel, Switzerland) at 225 rpm. From these
flasks, 1 mL of culture was added to a 250-mL Erlenmeyer flask containing 50 L
of aurantizolicin production media without HP20 resin, which was incubated
at 28 °C and 225 rpm for 72 h. After 24 h, d8-phenylalanine was added via
sterile syringe filtration to a final concentration of 4 mM. Cultures were
extracted and analyzed by LC-MS/MS.
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